FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems

In this paper, we present a priori error analysis for the finite element discretization of elliptic optimal control problems, where a finite dimensional control variable enters the Dirichlet boundary conditions. The analysis of finite element approximations of optimization problems governed by partial differential equations is an area of active research, see, e.g., [1, 12, 17, 18]. The consider...

متن کامل

Error Analysis for a Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems

We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The functional theoretical setting of this problem uses L2 controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation,...

متن کامل

Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems

In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adj...

متن کامل

Analysis of optimal boundary control of the Boussinesq approximation

In the present paper we complement the work in [2] with presenting the analytical framework for general optimal boundary control problems of the Boussinesq approximation. We prove existence of optimal controls, use results of [6] to prove existence and uniqueness of solutions to state and the adjoint system, and derive first order necessary as well as second order sufficient optimality conditions.

متن کامل

Analysis and Finite-Element Approximation of Optimal-Control Problems for the Stationary Navier-Stokes Equations with Distributed and Neumann Controls

We examine certain analytic and numerical aspects of optimal control problems for the stationary Navier-Stokes equations. The controls considered may be of either the distributed or Neumann type; the functional minimized are either the viscous dissipation or the L -distance of candidate flows to some desired flow. We show the existence of optimal solutions and justify the use of Lagrange multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2004

ISSN: 0304-9914

DOI: 10.4134/jkms.2004.41.4.681